题目内容

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(Ⅰ)求f(x)的单调区间;
(2)若x∈[0,
π
2
],f(x)=
11
10
,求cosx值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的求值
分析:(1)由向量和三角函数的运算可得f(x)=sin(x-
π
6
)+
1
2
,由2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
解不等式可得单调递增区间,同理可得单调递减区间;
(2)由已知可得sin(x-
π
6
)=
3
5
,进而可得cos(x-
π
6
)=
4
5
,代入cosx=
3
2
cos(x-
π
6
)-
1
2
sin(x-
π
6
)计算可得.
解答: 解:(1)∵
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),
∴f(x)=
m
n
+1=
3
sin
x
2
cos
x
2
-cos2
x
2
+1
=
3
2
sinx-
1
2
cosx+
1
2
=sin(x-
π
6
)+
1
2

由2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
可得2kπ-
π
3
≤x≤2kπ+
3

∴f(x)的单调递增区间为:[2kπ-
π
3
,2kπ+
3
],k∈Z,
同理可得单调递减区间为:[2kπ+
3
,2kπ+
3
],k∈Z,
(2)由(1)知f(x)=sin(x-
π
6
)+
1
2
=
11
10

∴sin(x-
π
6
)=
3
5
,又∵x∈[0,
π
2
],
∴x-
π
6
∈[-
π
6
π
3
],∴cos(x-
π
6
)=
4
5

∴cosx=cos[(x-
π
6
)+
π
6
]
=
3
2
cos(x-
π
6
)-
1
2
sin(x-
π
6

=
3
2
×
4
5
-
1
2
×
3
5
=
4
3
-3
10
点评:本题考查三角函数的恒等变换,涉及向量的数量积和三角函数的单调性,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网