题目内容
已知向量
=(cos
,-1),
=(
sin
,cos2
),设函数f(x)=
•
+1.
(Ⅰ)求f(x)的单调区间;
(2)若x∈[0,
],f(x)=
,求cosx值.
| m |
| x |
| 2 |
| n |
| 3 |
| x |
| 2 |
| x |
| 2 |
| m |
| n |
(Ⅰ)求f(x)的单调区间;
(2)若x∈[0,
| π |
| 2 |
| 11 |
| 10 |
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的求值
分析:(1)由向量和三角函数的运算可得f(x)=sin(x-
)+
,由2kπ-
≤x-
≤2kπ+
解不等式可得单调递增区间,同理可得单调递减区间;
(2)由已知可得sin(x-
)=
,进而可得cos(x-
)=
,代入cosx=
cos(x-
)-
sin(x-
)计算可得.
| π |
| 6 |
| 1 |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(2)由已知可得sin(x-
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
解答:
解:(1)∵
=(cos
,-1),
=(
sin
,cos2
),
∴f(x)=
•
+1=
sin
cos
-cos2
+1
=
sinx-
cosx+
=sin(x-
)+
,
由2kπ-
≤x-
≤2kπ+
可得2kπ-
≤x≤2kπ+
,
∴f(x)的单调递增区间为:[2kπ-
,2kπ+
],k∈Z,
同理可得单调递减区间为:[2kπ+
,2kπ+
],k∈Z,
(2)由(1)知f(x)=sin(x-
)+
=
,
∴sin(x-
)=
,又∵x∈[0,
],
∴x-
∈[-
,
],∴cos(x-
)=
,
∴cosx=cos[(x-
)+
]
=
cos(x-
)-
sin(x-
)
=
×
-
×
=
| m |
| x |
| 2 |
| n |
| 3 |
| x |
| 2 |
| x |
| 2 |
∴f(x)=
| m |
| n |
| 3 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
∴f(x)的单调递增区间为:[2kπ-
| π |
| 3 |
| 2π |
| 3 |
同理可得单调递减区间为:[2kπ+
| 2π |
| 3 |
| 5π |
| 3 |
(2)由(1)知f(x)=sin(x-
| π |
| 6 |
| 1 |
| 2 |
| 11 |
| 10 |
∴sin(x-
| π |
| 6 |
| 3 |
| 5 |
| π |
| 2 |
∴x-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 4 |
| 5 |
∴cosx=cos[(x-
| π |
| 6 |
| π |
| 6 |
=
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
=
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
4
| ||
| 10 |
点评:本题考查三角函数的恒等变换,涉及向量的数量积和三角函数的单调性,属中档题.
练习册系列答案
相关题目
下列结论正确的是( )
| A、任何集合都有子集 |
| B、任何集合都有真子集 |
| C、{∅}=∅ |
| D、{0}=∅ |
在长为16cm的线段AB上任取一点M,并以线段AM为一边作正方形,则此正方形的面积介于25cm2与81cm2之间的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|