题目内容

在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知bcosB=acosA,则△ABC的形状是(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形
考点:正弦定理
专题:计算题,解三角形
分析:利用正弦定理化简acosA=bcosB,通过两角差的正弦函数,求出A与B的关系,得到三角形的形状.
解答: 解:在△ABC中,∠A,∠B,∠C所对边分别为a,b,c,若acosA=bcosB,
所以sinAcosA=sinBcosB,
所以2A=2B或2A=π-2B,
所以A=B或A+B=90°.
所以三角形是等腰三角形或直角三角形.
故选:D.
点评:本题主要考查了考查正弦定理在三角形中的应用,三角形的形状的判断,考查计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网