题目内容
16.设变量x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}\right.$,若z=a2x+y(a>0)的最大值为4,则a=$\frac{\sqrt{7}}{7}$.分析 画出满足条件的平面区域,平移关于目标函数的直线,结合图象求出a的值.
解答
解:画出不等式组表示的可行域如图中影部分所示,
由z=a2x+y得y=-a2x+z,
目标函数z的最大值,是直线y=-a2x+z在y轴上的最大截距.
由图形可知,
当直线y=-a2x+z过点A时,在y轴上的截距取得最大值.
由$\left\{{\begin{array}{l}{x-y+2=0}\\{3x+y-9=0}\end{array}}\right.$,解得$A(\frac{7}{4},\frac{15}{4})$,
则$\frac{7}{4}{a^2}+\frac{15}{4}=4$,注意到a>0,
求得$a=\frac{{\sqrt{7}}}{7}$.
故答案为:$\frac{{\sqrt{7}}}{7}$.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
练习册系列答案
相关题目
4.过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A,B,若S△OAF=4S△OBF,则直线AB的斜率为( )
| A. | ±$\frac{3}{5}$ | B. | ±$\frac{4}{5}$ | C. | ±$\frac{3}{4}$ | D. | ±$\frac{4}{3}$ |
11.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$|a|=2,|b|=\sqrt{3}$,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
6.在区间[2,10]上任取一个数,这个数在区间[5,7]上的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |