题目内容
15.| A. | 向左平移$\frac{π}{6}$个单位长度 | B. | 向左平移$\frac{π}{12}$个单位长度 | ||
| C. | 向右平移$\frac{π}{6}$个单位长度 | D. | 向右平移$\frac{π}{12}$个单位长度 |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式;再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:根据函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象,
可得A=1,$\frac{1}{4}•T$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,故函数的解析式为f(x)=sin(2x+$\frac{π}{3}$).
故g(x)=Asin(ωx+$\frac{π}{6}$)=sin(2x+$\frac{π}{6}$),故把f(x)的图象向右平移$\frac{π}{12}$个单位长度,
可得g(x)=sin(2x+$\frac{π}{6}$) 的图象,
故选:D.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,还考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
16.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为$\frac{2π}{3}$,则该函数的单调增区间为( )
| A. | [$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z) | B. | [$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z) | ||
| C. | [kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z) | D. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) |
6.
某几何体的三视图如图所示,则其体积为( )
| A. | $\frac{3π}{4}$ | B. | $\frac{π+2}{4}$ | C. | $\frac{π+1}{2}$ | D. | $\frac{3π+2}{4}$ |
3.α,β,γ是三个平面,m,n是两条直线,下列命题正确的是( )
| A. | 若α∩β=m,n?α,m⊥n,则α⊥β | |
| B. | 若α⊥β,α∩β=m,α∩γ=n,则m⊥n | |
| C. | 若m⊥α,n⊥β,m∥n,则α∥β | |
| D. | 若m不垂直平面,则m不可能垂直于平面α内的无数条直线 |
10.(1-x)(2+x)5的展开式中x3的系数为( )
| A. | -40 | B. | 40 | C. | -15 | D. | 15 |
7.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.