题目内容
17.设函数y=x2-4px-2的图象经过M(tanα,1),N(tanβ,1)两点.求2cos2αcos2β+psin2(α+β)+2sin2(α-β)的值.分析 利用积化和差以及二倍角公式,化简2cos2αcos2β,化简所求的表达式,利用已知条件求出αβ的正切函数,
利用同角三角函数基本关系式化简求解即可.
解答 解:因为2cos2αcos2β=cos2(α+β)+cos2(α-β)
=1-2sin2(α+β)+1-2sin2(α-β)
则2cos2αcos2β+psin2(α+β)+2sin2(α-β)
=2-2sin2(α+β)+psin2(α+β)
=2-2sin2(α+β)+2psin(α+β)cos(α+β)
因为函数y=x2-4px-2的图象经过M(tanα,1),N(tanβ,1)两点.
可得1=tan2α-4ptanα-2
1=tan2β-4ptanβ-2
所以tanα,tanβ是x2-4px-3=0的两根
tanα+tanβ=4p
tanαtanβ=-3,
又tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{4p}{1-(-3)}$=p,
所以2-2sin2(α+β)+2psin(α+β)cos(α+β)
=2-2sin2(α+β)+2tan(α+β)sin(α+β)cos(α+β)
=$\frac{2co{s}^{2}(α+β)+2psin(α+β)cos(α+β)}{si{n}^{2}(α+β)+co{s}^{2}(α+β)}$
=$\frac{2+2ptan(α+β)}{ta{n}^{2}(α+β)+1}$
=$\frac{2+2{p}^{2}}{{p}^{2}+1}$
=2.
点评 本题考查两角和与差的三角函数,积化和差公式的应用,同角三角函数基本关系式的应用,考查计算能力.
练习册系列答案
相关题目
8.某地人群中高血压的患病率为p,由该地区随机抽查n人,则( )
| A. | 样本患病率X/n服从B(n,p) | |
| B. | n人中患高血压的人数X服从B(n,p) | |
| C. | 患病人数与样本患病率均不服从B(n,p) | |
| D. | 患病人数与样本患病率均服从B(n,p) |
5.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,且当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于( )
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
2.已知函数f(x)=asin2x+bcos2x(a,b∈R)的图象过点($\frac{π}{12}$,2),且点(-$\frac{π}{6}$,0)是其对称中心,将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则函数g(x)的解析式为( )
| A. | g(x)=2sin2x | B. | g(x)=2cos2x | C. | g(x)=2sin(2x+$\frac{π}{6}$) | D. | g(x)=2sin(2x-$\frac{π}{6}$) |
9.y=$\frac{1}{2}$sin(6x+1)的最大值( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 6 | D. | 1 |