题目内容

7.“函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数”是“函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数”的既不充分也不必要条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

分析 由于函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数,可得$\left\{\begin{array}{l}{a-1>0}\\{2(a-1)+2≥{a}^{2}}\\{a>1}\end{array}\right.$.函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数,$\frac{a}{2}≤1$,1-a+1>0,解出即可得出.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数,
∴$\left\{\begin{array}{l}{a-1>0}\\{2(a-1)+2≥{a}^{2}}\\{a>1}\end{array}\right.$,解得1<a≤2.
函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数,$\frac{a}{2}≤1$,1-a+1>0,解得a<2.
函数f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是单调递增函数”是“函数g(x)=log2(x2-ax+1)在[1,+∞)上是单调递增函数”的既不充分也不必要条件.
故答案为:既不充分也不必要.

点评 本题考查了函数的性质、不等式的解法及其性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网