题目内容
2.已知函数f(x)=asin2x+bcos2x(a,b∈R)的图象过点($\frac{π}{12}$,2),且点(-$\frac{π}{6}$,0)是其对称中心,将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则函数g(x)的解析式为( )| A. | g(x)=2sin2x | B. | g(x)=2cos2x | C. | g(x)=2sin(2x+$\frac{π}{6}$) | D. | g(x)=2sin(2x-$\frac{π}{6}$) |
分析 根据待定系数法求出a,b的值,得到f(x)的表达式,从而求出g(x)的表达式即可.
解答 解:由函数f(x)过点($\frac{π}{12}$,2),(-$\frac{π}{6}$,0)得:
$\left\{\begin{array}{l}{f(\frac{π}{12})=asin\frac{π}{6}+bcos\frac{π}{6}=2}\\{f(-\frac{π}{6})=asin(-\frac{π}{6})+bcos(-\frac{π}{6})=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=\sqrt{3}}\end{array}\right.$,
∴f(x)=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∴g(x)=2sin2x,
故选:A.
点评 本题考查了求函数的表达式问题,考查三角函数问题,是一道基础题.
练习册系列答案
相关题目