题目内容
等比数列{an}的前n项和Sn=2n-1,则a
+a
+…+a
=________.
(4n-1)
解析 当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1,
又∵a1=1适合上式.∴an=2n-1,∴a
=4n-1.
∴数列{a
}是以a
=1为首项,以4为公比的等比数列.
∴a
+a
+…+a
=
=
(4n-1).
练习册系列答案
相关题目
题目内容
等比数列{an}的前n项和Sn=2n-1,则a
+a
+…+a
=________.
(4n-1)
解析 当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1,
又∵a1=1适合上式.∴an=2n-1,∴a
=4n-1.
∴数列{a
}是以a
=1为首项,以4为公比的等比数列.
∴a
+a
+…+a
=
=
(4n-1).