题目内容

6.直线y=x+m与圆C:(x+4)2+y2=8交于M、N两点,且|$\overrightarrow{MN}$|≥$\sqrt{3}$|$\overrightarrow{CM}$+$\overrightarrow{CN}$|,则实数m的取值范围是(  )
A.[2,6]B.[4-$\sqrt{2}$,4+$\sqrt{2}$]C.[-6,-2]D.[-4-$\sqrt{2}$,-4+$\sqrt{2}$]

分析 MN的中点为A,则CA⊥MN,并且2$\overrightarrow{CA}$=$\overrightarrow{CM}$+$\overrightarrow{CN}$,利用|$\overrightarrow{MN}$|≥$\sqrt{3}$|$\overrightarrow{CM}$+$\overrightarrow{CN}$|,可得|$\overrightarrow{MN}$|≥2$\sqrt{3}$|$\overrightarrow{CA}$|,从而可得|$\overrightarrow{CA}$|≤$\sqrt{2}$,利用点到直线的距离公式,可得$\frac{|-4+m|}{\sqrt{2}}$≤$\sqrt{2}$,即可求出实数m的取值范围.

解答 解:设MN的中点为A,则CA⊥MN,并且2$\overrightarrow{CA}$=$\overrightarrow{CM}$+$\overrightarrow{CN}$,
∵|$\overrightarrow{MN}$|≥$\sqrt{3}$|$\overrightarrow{CM}$+$\overrightarrow{CN}$|,
∴|$\overrightarrow{MN}$|≥2$\sqrt{3}$|$\overrightarrow{CA}$|,
即为2$\sqrt{8-|\overrightarrow{CA}{|}^{2}}$≥2$\sqrt{3}$|$\overrightarrow{CA}$|,解得|$\overrightarrow{CA}$|≤$\sqrt{2}$,
∴C到直线MN的距离$\frac{|-4+m|}{\sqrt{2}}$≤$\sqrt{2}$,
解得2≤m≤6.
故选:A.

点评 本题考查了直线与圆的位置关系以及点到直线的距离问题,关键是通过熟练的运算得到m的不等式解之.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网