题目内容
19.求导数:(1)y=x3ex+2x2
(2)y=$\frac{{x}^{3}+1}{{x}^{2}}$+$\sqrt{{x}^{2}+1}$.
分析 (1)由导数的加法计算公式计算可得答案;
(2)根据题意,将函数的解析式化简变形为y=x+x-2+$\sqrt{{x}^{2}+1}$,由导数的加法计算公式计算可得答案.
解答 解:(1)y=x3ex+2x2,
其导数y′=(x3ex)′+(2x2)′=3x2ex+x3ex+4x=(3xex+x2ex+4)x,
(2)y=$\frac{{x}^{3}+1}{{x}^{2}}$+$\sqrt{{x}^{2}+1}$=x+$\frac{1}{{x}^{2}}$+$\sqrt{{x}^{2}+1}$=x+x-2+$\sqrt{{x}^{2}+1}$,
其导数y′=1+(-2)•x-3+$\frac{1}{2\sqrt{{x}^{2}+1}}$•2x=$\frac{{x}^{3}-2}{{x}^{3}}$+$\frac{x}{\sqrt{{x}^{2}+1}}$.
点评 本题考查函数导数的计算,关键是掌握导数的计算公式.
练习册系列答案
相关题目
7.如图是求样本x1,x2,…,x10平均数$\overline x$的程序框图,图中空白框中应填入的内容为( )

| A. | S=S+xn | B. | $S=S+\frac{x_n}{n}$ | C. | S=S+n | D. | $S=S+\frac{x_n}{10}$ |
14.若α的终边在第一、三象限的角平分线上,则$\frac{sinα}{\sqrt{1-si{n}^{2}α}}$+$\frac{\sqrt{1-co{s}^{2}α}}{cosα}$=±2tanα.
8.sin60°cos15°-cos300°sin165°的值为( )
| A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{1}{2}$ |
9.已知复数z=$\frac{1}{1-i}$,则$\overline{z}$•i在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |