题目内容
6.| A. | $\frac{15}{2}$ | B. | $\frac{\sqrt{15}}{2}$ | C. | $\frac{17}{2}$ | D. | $\frac{\sqrt{17}}{2}$ |
分析 首先由已知求出向量$\overrightarrow{p}$、$\overrightarrow{q}$的数量积,进一步求出$\overrightarrow{AB}$,$\overrightarrow{AC}$的模长以及它们的数量积,然后对|$\overrightarrow{AD}$|平方展开求值,再开方求模长.
解答 解:向量$\overrightarrow{p}$、$\overrightarrow{q}$满足|$\overrightarrow{p}$=2$\sqrt{2}$,|$\overrightarrow{q}$|=3,$\overrightarrow{p}$、$\overrightarrow{q}$的夹角为$\frac{π}{4}$,
所以$\overrightarrow{p}•\overrightarrow{q}=2\sqrt{2}×3×cos\frac{π}{4}$=6,
$\overrightarrow{AB}$=$\overrightarrow{p}$+2$\overrightarrow{q}$,$\overrightarrow{AC}$=$\overrightarrow{p}$-3$\overrightarrow{q}$,所以$|\overrightarrow{AB}|=\sqrt{{\overrightarrow{p}}^{2}+4{\overrightarrow{q}}^{2}+4\overrightarrow{p}•\overrightarrow{q}}$=$\sqrt{68}$,
$|\overrightarrow{AC}|=\sqrt{{\overrightarrow{p}}^{2}+9{\overrightarrow{q}}^{2}-6\overrightarrow{p}•\overrightarrow{q}}$=$\sqrt{53}$,$\overrightarrow{AB}•\overrightarrow{AC}$=${\overrightarrow{p}}^{2}-6{\overrightarrow{q}}^{2}-\overrightarrow{p}•\overrightarrow{q}$=-52;![]()
$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
则|$\overrightarrow{AD}$|2=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}+{\overrightarrow{AC}}^{2}+2\overrightarrow{AB}•\overrightarrow{AC}$)=$\frac{1}{4}$(68+53-104)=$\frac{17}{4}$;
所以|$\overrightarrow{AD}$|=$\frac{\sqrt{17}}{2}$;
故选D.
点评 本题考查了平面向量数量积公式的运用;熟练掌握公式是关键.
| A. | $\overline{{x}_{1}}$=$\overline{{x}_{2}}$,s1>s2 | B. | $\overline{{x}_{1}}$=$\overline{{x}_{2}}$,s1<s2 | C. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1>s2 | D. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1<s2 |
| A. | 3×2n-3n-3 | B. | 5×2n-3n-5 | C. | 3×2n-5n-3 | D. | 5×2n-5n-5 |
| A. | 7 | B. | 6 | C. | 5 | D. | 4 |
| A. | 19 | B. | 20 | C. | 21 | D. | 22 |
| A. | 3 | B. | $3\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 4 |