题目内容
9.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是( )| A. | $\sqrt{7}$ | B. | 2 | C. | 1 | D. | $\sqrt{3}$ |
分析 如图所示,该几何体为三棱锥,其中底面ABC为等边三角形,侧棱PC⊥底面ABC.取AB的中点D,连接CD,PD,可得CD⊥AB,PD⊥AB.
解答 解:如图所示,该几何体为三棱锥,其中底面ABC为等边三角形,侧棱PC⊥底面ABC.![]()
取AB的中点D,连接CD,PD,
则CD⊥AB,PD⊥AB,
CD=$\sqrt{3}$,PD=$\sqrt{P{C}^{2}+C{D}^{2}}$=$\sqrt{{2}^{2}+(\sqrt{3})^{2}}$=$\sqrt{7}$.
∴S△PAB=$\frac{1}{2}×\sqrt{7}×2$=$\sqrt{7}$.
故选:A.
点评 本题考查了三棱锥的三视图、三角形面积计算公式、空间位置关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.若实数x,y满足约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤x}\\{x+y≥1}\end{array}\right.$,则z=3x+y的最大值为( )
| A. | 1 | B. | 2 | C. | 5 | D. | 8 |
20.集合P={x|x+$\frac{1}{x}$≤2,x∈Z},集合Q={x|x2+2x-3>0},则P∩∁RQ=( )
| A. | [-3,0) | B. | {-3,-2,-1} | C. | {-3,-2,-1,0,1} | D. | {-3,-2,-1,1} |
17.
某学校对男女学生进行有关“习惯与礼仪”的调查,分别随机抽查了18名学生进行评分(百分制:得分越高,习惯与礼仪越好),评分记录如下:
男生:44,46,46,52,54,55,56,57,58,58,63,66,70,73,75,85,90,94.
女生:51,52,55,58,63,63,65,69,69,70,74,78,77,77,83,83,89,100
(1)请用茎叶图表示上面的数据,并通过茎叶图比较男女生“习惯与礼仪”评分的平均值及分散程度(不要求计算出具体的值,给出结论即可).
(2)记评分在60分以下的等级为较差,评分在60分以上的等级为较好,请完成2×2列联表,并判断是否有95%的把握认为“习惯与礼仪”与性别有关?并说明理由.
附:
男生:44,46,46,52,54,55,56,57,58,58,63,66,70,73,75,85,90,94.
女生:51,52,55,58,63,63,65,69,69,70,74,78,77,77,83,83,89,100
(1)请用茎叶图表示上面的数据,并通过茎叶图比较男女生“习惯与礼仪”评分的平均值及分散程度(不要求计算出具体的值,给出结论即可).
(2)记评分在60分以下的等级为较差,评分在60分以上的等级为较好,请完成2×2列联表,并判断是否有95%的把握认为“习惯与礼仪”与性别有关?并说明理由.
| 等级 性别 | 较差 | 较好 | 合计 |
| 男生 | |||
| 女生 | |||
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 | K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ |
| k | 3.841 | 6.635 | 10.828 |
4.
已知函数f(x)定义域为[-1,5],部分对应值如表,f(x)的导函数f′(x)的图象如图所示.
下列关于函数f(x)的命题:
①函数f(x)的极大值点有2个;
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中是真命题的是①②.(填写序号)
| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
①函数f(x)的极大值点有2个;
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中是真命题的是①②.(填写序号)
14.检验双向分类列联表数据下,两个分类特征(即两个因素变量)之间是彼此相关还是相互独立的问题,在常用的方法中,最为精确的做法是( )
| A. | 三维柱形图 | B. | 二维条形图 | C. | 等高条形图 | D. | 独立性检验 |
5.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是( )
| A. | ($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$) | B. | ($\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | C. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | D. | (-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$) |