题目内容

设函数f(x)=x2─2,用二分法求f(x)=0的一个近似解时,第1步确定了一个区间为(1,
3
2
),到第3步时,求得的近似解所在的区间应该是(  )
A、(1,
3
2
B、(
5
4
3
2
C、(
11
8
3
2
D、(
11
8
23
16
考点:二分法求方程的近似解
专题:函数的性质及应用
分析:把x=1,
3
2
5
4
11
8
23
16
代入函数解析式,分析函数值的符号是否异号即可.
解答: 解:令f(x)=x2-2,
则f(1)=-1<0,则f(
3
2
)>0,
f(
5
4
)=-
7
16
<0,
所以到第二步求得的近似解所在的区间应该是(
5
4
3
2
);
f(
11
8
)=-
7
64
<0,
由f(
11
8
)f(
3
2
)<0知到第3步时,求得的近似解所在的区间应该是在(
11
8
3
2
).
故选:C.
点评:此题考查二分法求方程的近似解,以及方程的根与函数的零点之间的关系,体现了转化的思想,同时也考查了学生分析解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网