题目内容
12.设α:x≤-5,β:2m-3≤x≤2m+1,若α是β的必要条件,则实数m的取值范围是(-∞,-3].分析 根据必要条件的定义建立不等式关系进行求解即可.
解答 解:∵α是β的必要条件,
∴β⇒α,
则2m+1≤-5,
即2m≤-6,
得m≤-3,
故答案为:(-∞,-3]
点评 本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义建立不等式关系是解决本题的关键.
练习册系列答案
相关题目
2.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤0)}\\{\sqrt{4-{x^2}}(x>0)}\end{array}}\right.$,则$\int_{-1}^2{f(x)dx}$=( )
| A. | $π-\frac{1}{3}$ | B. | $π+\frac{1}{3}$ | C. | $\frac{π}{4}+\frac{1}{3}$ | D. | $\frac{π}{2}-\frac{1}{3}$ |
2.椭圆3x2+4y2=6的离心率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |