题目内容
1.(1)求函数f(x)的最小正周期T;
(2)在给出的直角坐标系中,画出函数f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的图象;
(3)若当$x∈[{\frac{π}{12},\frac{7π}{12}}]$时,f(x)的反函数为f-1(x),求f-1(1)的值.
分析 (1)利用三角恒等变换,化简函数的解析式,可得该函数的最小正周期.
(2)用五点法作函数f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的图象.
(3)由题意利用反正弦函数的定义,由f(x)=1,求得x的值,可得f-1(1)的值.
解答 解:(1)函数$f(x)=2cosxsin({x+\frac{π}{3}})-\sqrt{3}{sin^2}x+sinxcosx$=2cosx(sinx•$\frac{1}{2}$+cosx•$\frac{\sqrt{3}}{2}$)-$\sqrt{3}$•$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x
=$\frac{1}{2}$sin2x+$\sqrt{3}$•$\frac{1+cos2x}{2}$-$\sqrt{3}$+$\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
故该函数的最小正周期为$\frac{2π}{2}$=π.
(2)画出函数f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的图象,如图所示:
| 2x+$\frac{π}{3}$ | -$\frac{2π}{3}$ | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | π | $\frac{4π}{3}$ |
| x | -$\frac{π}{2}$ | -$\frac{5π}{12}$ | -$\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{π}{2}$ |
| f(x) | -$\sqrt{3}$ | -2 | 0 | 2 | 0 | -$\sqrt{3}$ |
(3)若当$x∈[{\frac{π}{12},\frac{7π}{12}}]$时,f(x)的反函数为f-1(x),
由2sin(2x+$\frac{π}{3}$)=1,求得sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$.
结合2x+$\frac{π}{3}$∈[$\frac{π}{2}$,$\frac{3π}{2}$],∴2x+$\frac{π}{3}$=$\frac{5π}{6}$,∴x=$\frac{π}{4}$,即f-1(1)=$\frac{π}{4}$.
点评 本题主要考查三角恒等变换,用五点法作正弦函数的图象,反正弦函数的定义,属于中档题.
练习册系列答案
相关题目
11.某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
| 每件产品A | 每件产品B | ||
| 研制成本、搭载 费用之和(万元) | 20 | 30 | 计划最大资金额 300万元 |
| 产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
| 预计收益(万元) | 80 | 60 |
9.
我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用水量的分布情况.现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:),样本统计结果如图表:
(I)分别求出n,a,b的值;
(II)若从样本中月均用水量在[5,6](单位:)的5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的概率(5位居民的月均用水量均不相等).
| 分组 | 频数 | 频率 |
| [0,1) | a | |
| [1,2) | 0.19 | |
| [2,3) | 50 | b |
| [3,4) | 0.23 | |
| [4,5) | 0.18 | |
| [5,6) | 5 |
(II)若从样本中月均用水量在[5,6](单位:)的5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的概率(5位居民的月均用水量均不相等).
13.已知a>0,函数f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在区间$(0,\frac{1}{2}]$上至少存在一个实数x0,使f(x0)>g(x0)成立,则a的取值范围是( )
| A. | $(-3+\sqrt{17},+∞)$ | B. | $(3+\sqrt{17},+∞)$ | C. | $(-3+\sqrt{17},3+\sqrt{17})$ | D. | $(0,-3+\sqrt{17})$ |
10.已知命题p:函数f(x)=lnx+$\frac{1}{2}{x^2}$-ax为定义域上的增函数,命题q:函数f(x)=x2+$\frac{2}{x}$,$g(x)={(\frac{1}{2})^x}$-a满足对?x1∈[1,2],?x2∈[-1,1]有f(x1)≥g(x2)成立,若命题p∨q为真命题,命题p∧q为假命题,则实数a的取值范围是( )
| A. | (-∞,2] | B. | $[-\frac{5}{2},+∞)$ | C. | $(-∞,-\frac{5}{2})∪(2,+∞)$ | D. | $(-∞,-\frac{5}{2}]∪[2,+∞)$ |
11.曲线y=$\frac{1}{x}$与直线y=x及x=4所围成的封闭图形的面积为( )
| A. | 2ln2 | B. | 2-ln2 | C. | 7-2ln2 | D. | $\frac{15}{2}$-2ln2 |