题目内容

9.在△ABC中,角A,B,C所对的边分别为a,b,c.$\overrightarrow m=(\sqrt{3}a{,_{\;}}b)$,$\overrightarrow n=(cosB,sinA)$
(Ⅰ)若$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,求角A;
(Ⅱ)若向量$\overrightarrow m$与向量$\overrightarrow g=(1,1)$共线,c=2,且△ABC的面积为$\sqrt{3}$,求a的值.

分析 (Ⅰ)利用$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,结合正弦定理以及两角和与差的三角函数化简方程,转化求角A;
(Ⅱ)利用向量共线,三角形的面积,转化求解a即可.

解答 解:(Ⅰ)由$\overrightarrow m•\overrightarrow n=\sqrt{3}c$,即$\sqrt{3}acosB+bsinA=\sqrt{3}c$,
由正弦定理可得$\sqrt{3}sinAcosB+sinBsinA=\sqrt{3}sinC$=$\sqrt{3}sin(A+B)$.
即$\sqrt{3}sinAcosB+sinBsinA=\sqrt{3}sinAcosB+\sqrt{3}cosAsinB$.
即$sinBsinA=\sqrt{3}cosAsinB$,∴$sinA=\sqrt{3}cosA$,
∴$tanA=\sqrt{3}$,∴A=60°.
(Ⅱ)由${S_{△ABC}}=\frac{1}{2}absinC=\sqrt{3}$得:a2sinC=2①
由$4{a^2}-2\sqrt{3}{a^2}cosC=4$得:${a^2}(2-\sqrt{3}cosC)=2$②
由①,②得:$sinC=2-\sqrt{3}cosC$,即$sin(C+\frac{π}{3})=1$,
∴$C=\frac{π}{6}$,${a^2}=\frac{2}{sinC}=4$.
∴a=2.

点评 本题考查三角形的解法,正弦定理以及两角和与差的三角函数的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网