题目内容
2.若x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],函数y=cosx-sin2x的值域为[-$\frac{5}{4}$,1].分析 先可将原函数变成y=$(cosx+\frac{1}{2})^{2}-\frac{5}{4}$,而由x的范围,根据余弦函数的图象可求出$cosx∈[-\frac{1}{2},1]$,通过上面函数解析式即可求出原函数的最大值,最小值,从而求出其值域.
解答 解:y=cos2x+cosx-1=$(cosx+\frac{1}{2})^{2}-\frac{5}{4}$;
$x∈[-\frac{π}{3},\frac{2π}{3}]$,
∴$cosx∈[-\frac{1}{2},1]$;
∴$cosx=-\frac{1}{2}$时,原函数取最小值$-\frac{5}{4}$;
cosx=1时,原函数取最大值1;
∴原函数的值域为$[-\frac{5}{4},1]$.
故答案为:[$-\frac{5}{4}$,1].
点评 考查sin2x+cos2x=1,配方法求函数的最值,从而求出函数的值域,以及对余弦函数图象的掌握,根据余弦函数的图象求余弦函数的范围.
练习册系列答案
相关题目
12.在正项等比数列{an}中,log2a3+log2a6+log2a9=3,则a1a11的值是( )
| A. | 16 | B. | 8 | C. | 4 | D. | 2 |
10.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若asinA-csinC=(a-b)sinB.角C=( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
17.设两个向量$\overrightarrow a=(λ+2,{λ^2}-{cos^2}α)$和$\overrightarrow b=({m,\frac{m}{2}+sinα})$,其中λ,m,α为实数,若$\overrightarrow a=2\overrightarrow b$,则λ的取值范围是( )
| A. | $[{-\frac{3}{2},2}]$ | B. | $[{-2,\frac{3}{2}}]$ | C. | $[{-2,-\frac{3}{2}}]$ | D. | $[{\frac{3}{2},2}]$ |
11.
2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.(不考虑公交卡折扣情况)
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
(Ⅱ)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价从这120人中分层抽样所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;
(Ⅲ)小李乘坐地铁从A地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s公里,试写出s的取值范围.(只需写出结论)
| 乘公共电汽车方案 | 10公里(含)内2元; 10公里以上部分,每增加1元可乘坐5公里(含). |
乘坐地铁方案(不含机场线) | 6公里(含)内3元; 6公里至12公里(含)4元; 12公里至22公里(含)5元; 22公里至32公里(含)6元; 32公里以上部分,每增加1元可乘坐20公里(含). |
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
(Ⅱ)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价从这120人中分层抽样所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;
(Ⅲ)小李乘坐地铁从A地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s公里,试写出s的取值范围.(只需写出结论)