题目内容
18.已知a=log23,则4a=9.分析 根据对数的定义和指数幂的运算性质计算即可.
解答 解:∵a=log23,
∴2a=3,
∴4a=(2a)2=9,
故答案为:9.
点评 本题考查了对数的定义以及指数幂的运算性质,属于基础题.
练习册系列答案
相关题目
9.
如图,已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,点P在第一象限,且满足$\overrightarrow{|{F}_{2}P|}$=$\overrightarrow{a}$,($\overrightarrow{{F}_{1}P}+\overrightarrow{{F}_{1}{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,线段PF2与双曲线C交于点Q,若$\overrightarrow{{F}_{2}P}$=5$\overrightarrow{{F}_{2}Q}$,则双曲线C的渐近线方程为( )
| A. | y=±$\frac{\sqrt{5}}{5}x$ | B. | y=±$\frac{1}{2}x$ | C. | y=±$\frac{\sqrt{3}}{2}x$ | D. | y=±$\frac{\sqrt{3}}{3}x$ |
13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,则f(-2)=( )
| A. | -1 | B. | 0 | C. | $\frac{1}{4}$ | D. | 4 |
10.已知命题P:?x∈R,mx2+1<1;q:?x∈R,x2+mx+1≥0,若p∨(¬q)为假命题,则实数m的取值范围是( )
| A. | (-∞,0)∪(2,+∞) | B. | [0,2] | C. | [2,+∞) | D. | [-2,0] |