题目内容
13.设f(x)=$\left\{\begin{array}{l}{sin2x,x<0}\\{k-1,x≥0}\end{array}\right.$,问当k为何值时,函数f(x)在x=0点连续?分析 当x=0时,sin2x=sin0=0,若函数f(x)在x=0点连续,则k-1=0,解得答案.
解答 解:当x=0时,f(0)=k-1,
当x=0时,sin2x=sin0=0,
若函数f(x)在x=0点连续,
则k-1=0,
解得:k=1.
点评 本题考查的知识点是分段函数的应用,函数的连续性,难度不大,属于基础题.
练习册系列答案
相关题目
3.已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合.曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程是ρ(cosθ+2sinθ)=15.若点P、Q分别是曲线C和直线l上的动点,则P、Q两点之间距离的最小值是( )
| A. | $\sqrt{10}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{21}$ |
4.函数f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的图象关于原点对称,则a=( )
| A. | 1 | B. | -1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
1.把函数g(x)=sin(x-$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位可以得到函数f(x)的图象,则f($\frac{π}{6}$)=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -1 | D. | 1 |
18.
如图,在平面直角坐标系中有三条直线l1,l2,l3,其对应的斜率分别为k1,k2,k3,则下面选项中正确的是( )
| A. | k3>k1>k2 | B. | k1-k2<0 | C. | k2•k3>0 | D. | k3>k2>k1 |