题目内容

已知lga+lgb=0,函数f(x)=ax与函数g(x)=-logbx的图象可能是(  )
A、
B、
C、
D、
考点:对数函数的图像与性质,指数函数的图像与性质
专题:函数的性质及应用
分析:由lga+lgb=0,则得到lgab=0,即ab=1,然后根据指数函数和对数函数的性质即可判断函数的图象.
解答: 解;解:∵lga+lgb=0,
∴lgab=0,即ab=1,b=
1
a

∵函数f(x)=ax与函数g(x)=-logbx
∴函数f(x)=ax与函数g(x)=logax,
a>1,f(x)与g(x)都是单调递增,
0<a<1,f(x)与g(x)都是单调递减,
∴f(x)与g(x)单调相同,
故选:C
点评:本题主要考查指数函数和对数函数的图象的判断,利用对数的运算法则确定ab=1是解决本题的关键,根据函数单调性的对应关系解决本题即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网