题目内容
18.已知x∈(0,+∞),观察下列各式:$x+\frac{1}{x}>2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}≥3,x+\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}≥4,…$类比得$x+\frac{a}{x^n}≥n+1({n∈{N^*}})$,则a=nn.分析 观察前几个式子的分子分母可发现规律得出结论.
解答 解:当n=1时,a=1,
当n=2时,a=2=22,
当n=3时,a=27=33,
…
∴当分母指数取n时,a=nn.
故答案为nn.
点评 本题考查了归纳推理,寻找规律是关键.
练习册系列答案
相关题目
6.某高中要从该校三个年级中各选取1名学生参加校外的一项知识问答活动,若高一、高二、高三年级分别有5,6,8个学生备选,则不同选法有( )
| A. | 19种 | B. | 38种 | C. | 120种 | D. | 240种 |
13.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx+cosx,sinx-cosx)(x∈R),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的取值集合为( )
| A. | {x|x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z} | B. | {x|x=kπ+$\frac{π}{8}$,k∈Z} | C. | {x|x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z} | D. | {x|x=kπ+$\frac{π}{4}$,k∈Z} |
3.
某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的表面积是( )
| A. | $96+16\sqrt{5}$ | B. | $80+16\sqrt{5}$ | C. | $80+32\sqrt{5}$ | D. | $96+32\sqrt{5}$ |
10.
一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )
| A. | 24 | B. | 48 | C. | 72 | D. | 96 |