题目内容
2.已知双曲线的一条渐近线方程为y=4x,且双曲线的焦点与抛物线y2=8x的焦点是重合的,则双曲线的标准方程为( )| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$ | ||
| C. | $\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{2}=1$ |
分析 求出抛物线的焦点坐标,确实双曲线的焦点坐标和方程,结合渐近线,利用待定系数法设出双曲线的方程,利用a,b,c的关系进行求解即可.
解答 解:∵双曲线的焦点与抛物线y2=8x的焦点是重合,
∴抛物线的焦点为(2,0),焦点在x轴上,
∵双曲线的一条渐近线方程为y=4x,
∴设双曲线的方程为x2-$\frac{{y}^{2}}{16}$=λ(λ>0),
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{16λ}$=1,
则a2=λ,b2=16λ,
c2=λ+16λ=17λ=4,
则λ=$\frac{4}{17}$,
则双曲线的标准方程为$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$,
故选:B
点评 本题主要考查双曲线的方程和性质,根据双曲线和抛物线焦点关系求出c,以及利用待定系数法是解决本题的关键.
练习册系列答案
相关题目
10.已知抛物线E:x2=8y的焦点F到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐进线的距离为$\frac{4\sqrt{5}}{5}$,且抛物线E上的动点M到双曲线C的右焦点F1(c,0)的距离与直线y=-2的距离之和的最小值为3,则双曲线C的方程为( )
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 |
17.不等式$\frac{1}{x}$>1的解集为( )
| A. | (-∞,1) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,0)∪(1,+∞) |
7.设点A,F(c,0)分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点、右焦点,直线x=$\frac{a^2}{c}$交该双曲线的一条渐近线于点P,若△PAF是等腰三角形,则此双曲线的离心率为( )
| A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{2}$ | D. | 2 |
14.设A(-3,0),B(3,0),若直线y=-$\frac{3\sqrt{5}}{10}$(x-5)上存在一点P满足|PA|-|PB|=4,则点P到z轴的距离为( )
| A. | $\frac{3\sqrt{5}}{4}$ | B. | $\frac{5\sqrt{5}}{3}$ | C. | $\frac{3\sqrt{5}}{4}$或$\frac{3\sqrt{5}}{2}$ | D. | $\frac{5\sqrt{5}}{3}$或$\sqrt{5}$ |
11.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若点F2关于直线y=$\frac{b}{a}$x的对称点M也在双曲线上,则该双曲线的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
12.用更相减损术求得81与135的最大公约数是( )
| A. | 54 | B. | 27 | C. | 9 | D. | 81 |