题目内容
17.不等式$\frac{1}{x}$>1的解集为( )| A. | (-∞,1) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,0)∪(1,+∞) |
分析 不等式$\frac{1}{x}$>1等价于x(x-1)<0,解得即可.
解答 解:不等式$\frac{1}{x}$>1等价于$\frac{1}{x}$-1>0,即为$\frac{1-x}{x}$>0,即为x(x-1)<0,解得0<x<1,
故不等式的解集为(0,1),
故选:B.
点评 本题考查了分式不等式的解法,灵活转化是关键,属于基础题.
练习册系列答案
相关题目
7.设双曲线$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1的一条渐近线为y=-2x,且一个焦点与抛物线y=$\frac{1}{4}$x2的焦点相同,则此双曲线的方程为( )
| A. | $\frac{5}{4}$x2-5y2=1 | B. | 5y2-$\frac{5}{4}$x2=1 | C. | 5x2-$\frac{5}{4}$y2=1 | D. | $\frac{5}{4}$y2-5x2=1 |
8.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-2\overrightarrow b}|≤2$,则$\overrightarrow b$在$\overrightarrow a$上的投影的取值范围是( )
| A. | $[{\frac{1}{2},2}]$ | B. | $({\frac{1}{2},2})$ | C. | $[{\frac{1}{2},1}]$ | D. | $({\frac{1}{2},1})$ |
5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与抛物线y2=20x的焦点重合,且其渐近线方程为y=±$\frac{4}{3}$x,则双曲线C的方程为( )
| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1 | D. | $\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1 |
2.已知双曲线的一条渐近线方程为y=4x,且双曲线的焦点与抛物线y2=8x的焦点是重合的,则双曲线的标准方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$ | ||
| C. | $\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{2}=1$ |