题目内容
12.(1)求证:平面PAB⊥平面PCB;
(2)求四棱锥P-ABCD的体积V.
分析 (1)由PA⊥底面ABCD得PA⊥BC,又AB⊥BC,故BC⊥平面PAB,于是平面PAB⊥平面PCB;
(2)由PA⊥底面ABCD得PA⊥AD,又AD⊥PC,故AD⊥平面PAC,于是AD⊥AC,由到腰直角三角形ABC可计算AC=$\sqrt{2}$,∠BAC=45°,故∠ACD=45°,于是CD=$\sqrt{2}AC=2$,代入棱锥体积公式计算即可求得体积.
解答 (1)证明:∵PA⊥底面ABCD,BC?平面ABCD,
∴PA⊥BC.又AB⊥BC,PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴BC⊥平面PAB.又BC?平面PCB,
∴平面PAB⊥平面PCB.
(2)解:∵PA⊥底面ABCD,AD?平面ABCD,
∴PA⊥AD.又PC⊥AD,PA?平面PAC,PC?平面PAC,PA∩PC=P,
∴AD⊥平面PAC,∵AC?平面PAC,
∴AC⊥AD,
∵AB⊥BC,AB=BC=1,
∴∠BAC=$\frac{π}{4}$,AC=$\sqrt{2}$,
∵AB∥CD,
∴∠ACD=∠BAC=$\frac{π}{4}$.
又AC⊥AD,∴△DAC为等腰直角三角形,
∴DC=$\sqrt{2}$AC=2,
∴S梯形ABCD=$\frac{1}{2}×(1+2)×1$=$\frac{3}{2}$,
∴VP-ABCD=$\frac{1}{3}{S}_{梯形ABCD}•PA$=$\frac{1}{3}×\frac{3}{2}×1=\frac{1}{2}$.
点评 本题考查了面面垂直的判定,线面垂直的判定与性质,棱锥的体积计算,属于中档题.
练习册系列答案
相关题目
7.设双曲线$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1的一条渐近线为y=-2x,且一个焦点与抛物线y=$\frac{1}{4}$x2的焦点相同,则此双曲线的方程为( )
| A. | $\frac{5}{4}$x2-5y2=1 | B. | 5y2-$\frac{5}{4}$x2=1 | C. | 5x2-$\frac{5}{4}$y2=1 | D. | $\frac{5}{4}$y2-5x2=1 |
17.与双曲线$\frac{y^2}{4}-\frac{x^2}{3}=1$共同的渐近线,且过点(-3,2)的双曲线的标准方程是( )
| A. | $\frac{y^2}{8}-\frac{x^2}{6}=1$ | B. | $\frac{x^2}{6}-\frac{y^2}{8}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{y^2}{9}-\frac{x^2}{16}=1$ |
1.已知复数z=1+i(i是虚数单位),则$\frac{2}{z}$-z2的共轭复数是( )
| A. | -1+3i | B. | 1+3i | C. | 1-3i | D. | -1-3i |
2.已知双曲线的一条渐近线方程为y=4x,且双曲线的焦点与抛物线y2=8x的焦点是重合的,则双曲线的标准方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$ | ||
| C. | $\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{2}=1$ |