题目内容

11.化简:$\frac{1}{2}cos2αcos2β-{sin^2}α{sin^2}β-{cos^2}α{cos^2}β$=-$\frac{1}{2}$.

分析 由条件利用同角三角函数的基本关系、二倍角公式化简所给的式子,即可求得结果.

解答 解:∵cos2αcos2β=(cos2α-sin2α)(cos2β-sin2β)
=cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β,
∴$\frac{1}{2}$cos2αcos2β-sin2α•sin2β-cos2α•cos2β
=$\frac{1}{2}$(cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β)-sin2α•sin2β-cos2α•cos2β
=-$\frac{1}{2}$(cos2α•cos2β+sin2α•sin2β+cos2αsin2β+sin2αcos2β)
=-$\frac{1}{2}$(cos2α•cos2β+cos2αsin2β)-$\frac{1}{2}$(sin2α•sin2β+sin2αcos2β)
=-$\frac{1}{2}$cos2α-$\frac{1}{2}$sin2α
=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题主要考查了同角三角函数的基本关系、二倍角公式的应用问题,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网