ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªÕýÏîÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Ç°nÏîºÍSnÂú×ãan=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¨n¡Ý2£©£¨1£©ÇóÖ¤£º$\left\{{\sqrt{S_n}\left.{\;}\right\}}$ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃÊýÁÐ$\left\{{\frac{S_n}{{¦Ë+{a_n}}}}\right\}$³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµºÍ¸ÃÊýÁÐǰnÏîµÄºÍ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©an=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¨n¡Ý2£©£¬¿ÉµÃSn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¬¸ù¾Ý?n¡ÊN*£¬an£¾0£¬¿ÉµÃSn£¾0£®¿ÉµÃ$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1£®¼´¿ÉÖ¤Ã÷£¬½ø¶øµÃ³öSn£¬n¡Ý2ʱ£¬an=Sn-Sn-1£®
£¨2£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃÊýÁÐ$\left\{{\frac{S_n}{{¦Ë+{a_n}}}}\right\}$³ÉµÈ²îÊýÁУ®¿ÉµÃ$\frac{2{S}_{2}}{¦Ë+{a}_{2}}$=$\frac{{S}_{1}}{¦Ë+{a}_{1}}$+$\frac{{S}_{3}}{¦Ë+{a}_{3}}$£¬´úÈë¼´¿ÉµÃ³ö£®
½â´ð £¨1£©Ö¤Ã÷£º¡ßan=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¨n¡Ý2£©£¬¡àSn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¬¡ß?n¡ÊN*£¬an£¾0£¬¡àSn£¾0£®
¡à$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1£®
¡à$\left\{{\sqrt{S_n}\left.{\;}\right\}}$ΪµÈ²îÊýÁУ¬¹«²îΪ1£¬Ê×ÏîΪ1£®
¡à$\sqrt{{S}_{n}}$=1+£¨n-1£©=n£¬¿ÉµÃSn=n2£®
¡àn¡Ý2ʱ£¬an=Sn-Sn-1=n2-£¨n-1£©2=2n-1£®
n=1ʱÉÏʽҲ³ÉÁ¢£®
¡àan=2n-1£®
£¨2£©½â£º¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃÊýÁÐ$\left\{{\frac{S_n}{{¦Ë+{a_n}}}}\right\}$³ÉµÈ²îÊýÁУ®
Ôò$\frac{2{S}_{2}}{¦Ë+{a}_{2}}$=$\frac{{S}_{1}}{¦Ë+{a}_{1}}$+$\frac{{S}_{3}}{¦Ë+{a}_{3}}$£¬
¡à$\frac{2¡Á{2}^{2}}{¦Ë+3}$=$\frac{1}{¦Ë+1}$+$\frac{{3}^{2}}{¦Ë+5}$£¬
»¯Îª£º¦Ë2-2¦Ë+1=0£¬½âµÃ¦Ë=1£¬
¡à´æÔÚʵÊý¦Ë=1£¬Ê¹µÃÊýÁÐ$\left\{{\frac{S_n}{{¦Ë+{a_n}}}}\right\}$³ÉµÈ²îÊýÁУ®
¡à$\frac{{S}_{n}}{1+{a}_{n}}$=$\frac{{n}^{2}}{1+2n-1}$=$\frac{n}{2}$£®
ÊýÁÐ$\{\frac{n}{2}\}$µÄǰnÏîºÍΪ£º$\frac{n£¨\frac{1}{2}+\frac{n}{2}£©}{2}$=$\frac{{n}^{2}+n}{4}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮