题目内容

15.在△ABC中,角A,B,C所对的边分别为a,b,c,根据下列条件解三角形,其中有两个解的是(  )
A.a=5,b=5,A=50°B.a=3,b=4,A=30°
C.a=5,b=10,A=30°D.a=12,b=10,A=135°

分析 由正弦定理可得sinB=$\frac{b•sinA}{a}$,根据条件求得sinB的值,根据b与a的大小判断角B的大小,从而判断△ABC的解的个数.

解答 解:对于A:a=5,b=5,A=50°,由b=a,故B=A=50°,C=80°,故△ABC有唯一解,
对于B:a=3,b=4,A=30°,有sinB=$\frac{b•sinA}{a}$=$\frac{4×\frac{1}{2}}{3}$=$\frac{2}{3}$,又b>a,故B>A,故B可以是锐角,也可以是钝角,故△ABC有两个解,
对于C:a=5,b=10,A=30°,有sinB=$\frac{b•sinA}{a}$=$\frac{10×\frac{1}{2}}{5}$=1,B为直角,故△ABC有唯一解,
对于D:a=12,b=10,A=135°,有sinB=$\frac{b•sinA}{a}$=$\frac{10×\frac{\sqrt{2}}{2}}{12}$=$\frac{5\sqrt{2}}{12}$,又b<a,故B<A,故B为锐角,故△ABC有唯一解.
故选:B.

点评 此题属于解三角形的题型,涉及的知识有:正弦定理,三角形的边角关系,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网