ÌâÄ¿ÄÚÈÝ
9£®Ä³ÑÀ¸à³§Éú²úµÄÑÀ¸àµÄÄêÏúÊÛÁ¿£¨¼´¸Ã³§µÄÄê²úÁ¿£©xÍòÖ§ÓëÄê¹ã¸æ·ÑÓÃaÍòÔª£¨a¡Ý0£©Âú×ã$x=3-\frac{k}{a+1}$£¨kΪ³£Êý£©£¬Èç¹û²»½øÐÐ¹ã¸æÐû´«£¬Ôò¸ÃÑÀ¸àµÄÄêÏúÊÛÁ¿ÊÇ1ÍòÖ§£®ÒÑÖª2014ÄêÉú²ú¸ÃÑÀ¸àµÄ¹Ì¶¨Í¶ÈëΪ8ÍòÔª£¬Ã¿Éú²ú1ÍòÖ§¸Ã²úÆ·ÐèÒªÔÙͶÈë16ÍòÔª£¬³§¼Ò½«Ã¿Ö§ÑÀ¸àµÄÏúÊÛ¼Û¸ñ¶¨ÎªÃ¿Ö§ÑÀ¸àƽ¾ù³É±¾µÄ$\frac{3}{2}$±¶£¨²úÆ·³É±¾°üÀ¨¹Ì¶¨Í¶ÈëºÍÔÙͶÈëÁ½²¿·Ö×ʽ𣬲»°üÀ¨¹ã¸æ·ÑÓã©£®£¨1£©½«2014Äê¸Ã²úÆ·µÄÀûÈóyÍòÔª±íʾΪÄê¹ã¸æ·ÑÓÃaÍòÔªµÄº¯Êý£»
£¨²úÆ·µÄÀûÈó=ÏúÊÛÊÕÈë-²úÆ·³É±¾-¹ã¸æ·ÑÓã©
£¨2£©¸Ã³§¼Ò2014ÄêµÄ¹ã¸æ·ÑÓÃΪ¶àÉÙÍòԪʱ£¬³§¼ÒµÄÀûÈó×î´ó£¿×î´óÖµÊǶàÉÙ£¿
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖªµ±a=0ʱ£¬x=1£¨Íò¼þ£©£¬¿ÉµÃ1=3-k£¬½âµÃk£®¼´¿ÉµÃ³ö$x=3-\frac{2}{a+1}$£®Ã¿¼þ²úÆ·µÄÏúÊÛ¼Û¸ñΪ$15•\frac{8+16x}{x}$£¨Ôª£©£®¿ÉµÃ2014ÄêµÄÀûÈóy=x$£¨\frac{3}{2}•\frac{8+16x}{x}£©$-£¨8+16x+a£©=-$[\frac{16}{a+1}+£¨a+1£©]+29$£¨a¡Ý0£©£®
£¨2£©·½·¨Ò»£ºÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
·½·¨¶þ£ºÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖªµ±a=0ʱ£¬x=1£¨Íò¼þ£©
¡à1=3-k£¬¼´k=2£®
ËùÒÔ$x=3-\frac{2}{a+1}$£®Ã¿¼þ²úÆ·µÄÏúÊÛ¼Û¸ñΪ$15•\frac{8+16x}{x}$£¨Ôª£©
¡à2014ÄêµÄÀûÈóy=x$£¨\frac{3}{2}•\frac{8+16x}{x}£©$-£¨8+16x+a£©=4+8x-a=4+8$£¨3-\frac{2}{a+1}£©$-a
=-$[\frac{16}{a+1}+£¨a+1£©]+29$£¨a¡Ý0£©£®
£¨2£©·½·¨Ò»£º¡ß$a¡Ý0£¬\frac{16}{a+1}+£¨{a+1}£©¡Ý2\sqrt{16}=8$£¬
¡ày¡Ü-8+29=21£®µ±ÇÒ½öµ±$\frac{16}{a+1}=£¨{a+1}£©⇒a=3$£¨ÍòÔª£©Ê±£¬ymax=21£¨ÍòÔª£©
ËùÒÔµ±¹ã¸æ·ÑÓÃΪ3ÍòԪʱ£¬ÀûÈó×î´ó£¬×î´óÖµÊÇ21ÍòÔª£®
·½·¨¶þ£ºÇóµ¼£º$y=x£¨{\frac{3}{2}¡Á\frac{8+16x}{x}}£©-£¨{8+16x+a}£©$=4+8x-a
=$4+8£¨{3-\frac{2}{a+1}}£©$-a=$£¨{-\frac{16}{a+1}}£©$-a+28£¬y'=$\frac{16}{{{{£¨a+1£©}^2}}}$-1£¬
Áîy'=0£¬ÇóµÃa=3£¬´úÈëÔº¯Êý£¬×î´óΪ21ÍòÔª£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄÐÔÖʼ°ÆäÓ¦Óᢻù±¾²»µÈʽµÄÐÔÖÊ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | bf£¨lna£©£¼af£¨lnb£© | B£® | bf£¨lna£©=af£¨lnb£© | ||
| C£® | bf£¨lna£©£¾af£¨lnb£© | D£® | bf£¨lna£©Óëaf£¨lnb£©µÄ´óС²»È·¶¨ |
| Äê·Ý | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| Äê·Ý´úºÅt | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| È˾ù´¿ÊÕÈëy | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
£¨2£©ÀûÓã¨1£©ÖеĻع鷽³Ì£¬·ÖÎö2007ÄêÖÁ2013Äê¸ÃµØÇøÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈëµÄ±ä»¯Çé¿ö£¬²¢Ô¤²â¸ÃµØÇø2015ÄêÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈ룮
¿ÉÓù«Ê½£º$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n£¨\overline x{£©^2}}}}$=$\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{£¨{x_i}-\overline x{£©^2}}}}$£¬$\widehat{a}$=$\overline y$-$\widehat{b}$$\overline x$£®
| A£® | $£¨{-\frac{1}{4}£¬0}£©$ | B£® | $£¨{-\frac{1}{4}£¬0}]$ | C£® | $[{-\frac{1}{2}£¬1}]$ | D£® | $[{-\frac{1}{2}£¬1}£©$ |