题目内容
15.已知集合A={x|y=lg(x-1)},B={x|2${\;}^{{x}^{2}-2x}$<1},则A∩B=( )| A. | {x|x>1} | B. | {x|x>0} | C. | {x|0<x<2} | D. | {x|1<x<2} |
分析 先分别求出集合A和B,由此利用交集定义能求出A∩B.
解答 解:∵集合A={x|y=lg(x-1)}={x|x>1},
B={x|2${\;}^{{x}^{2}-2x}$<1}={x|0<x<2},
∴A∩B={x|1<x<2}.
故选:D.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
3.已知抛物线y2=20x的焦点F恰好为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |
10.直线l:y=k(x+$\sqrt{2}$)与曲线C:x2-y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是( )
| A. | ($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$) | B. | ($\frac{π}{4}$,$\frac{3π}{4}$) | C. | (0,$\frac{π}{2}$)∪($\frac{π}{2}$,π) | D. | [0,π) |
20.若α∈($\frac{π}{2}$,π),则3cos2α=cos($\frac{π}{4}$+α),则sin2α的值为( )
| A. | $\frac{1}{18}$ | B. | -$\frac{1}{18}$ | C. | $\frac{17}{18}$ | D. | -$\frac{17}{18}$ |
7.
如图,抛物线y2=2px(p>0)和圆x2+y2-px=0,直线l经过抛物线的焦点,依次交抛物线与圆于A,B,C,D四点,|AB|•|CD|=2则p的值为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |