ÌâÄ¿ÄÚÈÝ
10£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$¦È+\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®£¨¢ñ£©·Ö±ð½«ÇúÏßCµÄ²ÎÊý·½³ÌºÍÖ±ÏßlµÄ¼«×ø±ê·½³Ìת»¯ÎªÖ±½Ç×ø±êϵÏÂµÄÆÕͨ·½³Ì£»
£¨¢ò£©¶¯µãAÔÚÇúÏßCÉÏ£¬¶¯µãBÔÚÖ±ÏßlÉÏ£¬¶¨µãPµÄ×ø±êΪ£¨-2£¬2£©£¬Çó|PB|+|AB|µÄ×îСֵ£®
·ÖÎö £¨1£©Ïû²ÎÊý£¬¸ù¾Ýcos2¦Á+cos2¦Á=1µÃ³öÇúÏßCµÄÆÕͨ·½³Ì£¬ÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃµ½Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Çó³öP¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãP¡ä£¬Ôò|PB|+|AB|µÄ×îСֵΪP¡äµ½Ô²ÐĵľàÀë¼õÈ¥ÇúÏßCµÄ°ë¾¶£®
½â´ð ½â£º£¨1£©¡ß$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{cos¦Á=x-1}\\{sin¦Á=y}\end{array}\right.$£¬¡à£¨x-1£©2+y2=1£®
¡àÇúÏßCµÄÆÕͨ·½³ÌÊÇ£º£¨x-1£©2+y2=1£®
¡ß¦Ñsin£¨$¦È+\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¬¡à$\frac{\sqrt{2}}{2}$¦Ñsin¦È+$\frac{\sqrt{2}}{2}$¦Ñcos¦È=2$\sqrt{2}$£¬¼´¦Ñsin¦È+¦Ñcos¦È=4£®
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£®
£¨2£©ÉèµãP¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãΪP¡ä£¨x£¬y£©£¬Ôò$\left\{\begin{array}{l}{\frac{y-2}{x+2}=1}\\{\frac{x-2}{2}+\frac{y+2}{2}-4=0}\end{array}\right.$£¬½âµÃP¡ä£¨2£¬6£©£®
¡àP¡äµ½ÇúÏßCµÄÔ²ÐÄ£¨1£¬0£©µÄ¾àÀëd=$\sqrt{£¨2-1£©^{2}+£¨6-0£©^{2}}$=$\sqrt{37}$£®
¡à|PB|+|AB|µÄ×îСֵΪ$\sqrt{37}-1$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬×î¶Ì¾àÀëµÄÇ󷨣¬ÊôÓÚ»ù´¡Ì⣮
| A£® | 1 | B£® | 0 | C£® | 2 | D£® | -2 |