题目内容

1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosβ}\\{y=sinβ}\end{array}\right.$ (β为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ
(1)将C1的方程化为普通方程,将C2的方程化为直角坐标方程;
(2)已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ ($\frac{π}{2}$<α<π,t为参数,且t≠0),l与C1交于点A,l与C2交于点B,且|AB|=$\sqrt{3}$,求α的值.

分析 (1)利用参数方程与极坐标方程化简为普通方程即可.
(2)曲线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ ($\frac{π}{2}$<α<π,t为参数,且t≠0),化为y=xtanα.由题意可得:|OA|=ρ1=2cosα,|OB|=ρ2=4cosα,利用|AB|=$\sqrt{3}$,即可得出.

解答 解:(1)曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosβ}\\{y=sinβ}\end{array}\right.$ (β为参数),可得普通方程为:(x-1)2+y2=1,
以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ,
可得:x2+y2=4x.
(2)曲线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ ($\frac{π}{2}$<α<π,t为参数,且t≠0),化为y=xtanα.
由题意可得:|OA|=ρ1=2cosα,|OB|=ρ2=4cosα,
∵|AB|=$\sqrt{3}$,
∴|OA|-|OB|=-2cosα=$\sqrt{3}$,即cosα=-$\frac{\sqrt{3}}{2}$.
又$\frac{π}{2}$<α<π,
∴α=$\frac{5π}{6}$.

点评 本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、两点之间的距离、圆的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网