题目内容

5.已知A,B分别是射线CM,CM(不含端点C)上运动,在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若∠MCN=$\frac{2π}{3}$,a,b,c依次成等差数列,且公差为2,求c的值;
(2)若∠MCN=$\frac{π}{3},c=\sqrt{3}$,∠ABC=θ,求a+b的最大值.

分析 (1)由等差数列推导出a=c-4,b=c-2,由$∠MCN=\frac{2}{3}π,cosC=-\frac{1}{2}$,得c2-9c+14=0,由此能求出c.
(2)在△ABC中,由正弦定理可得$\frac{AC}{sinθ}=\frac{BC}{{sin(\frac{2π}{3}-θ)}}=\frac{{\sqrt{3}}}{{sin\frac{π}{3}}}=2,从而AC=2sinθ,BC=2sinθsin(\frac{2π}{3}-θ)$,由此能求出a+b的最大值.

解答 解:(1)因为a,b,c成等差数列,且公差为2,所以a=c-4,b=c-2,
又因为$∠MCN=\frac{2}{3}π,cosC=-\frac{1}{2}$,所以$\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=-\frac{1}{2}⇒\frac{{{{(c-4)}^2}+{{(c-2)}^2}-{c^2}}}{2(c-4)(c-2)}=-\frac{1}{2}$,
变形得c2-9c+14=0,解得c=7或c=2,
又因为c>4,所以c=7.
(2)在△ABC中,由正弦定理可得$\frac{AC}{sin∠ABC}=\frac{BC}{sin∠BAC}=\frac{AB}{sin∠ACB}$,
所以$\frac{AC}{sinθ}=\frac{BC}{{sin(\frac{2π}{3}-θ)}}=\frac{{\sqrt{3}}}{{sin\frac{π}{3}}}=2⇒AC=2sinθ,BC=2sinθsin(\frac{2π}{3}-θ)$
所以$a+b=|{AC}|+|{BC}|=2sinθ+2sin(\frac{2π}{3}-θ)=2\sqrt{3}(\frac{{\sqrt{3}}}{2}sinθ+\frac{1}{2}cosθ)=2\sqrt{3}sin(θ+\frac{π}{6})$,
又因为$θ∈(0,\frac{2π}{3})$,所以$\frac{π}{6}<θ+\frac{π}{6}<\frac{5π}{6}$,
当$θ+\frac{π}{6}=\frac{π}{2}$,即$θ=\frac{π}{3}$时,a+b取得最大值$2\sqrt{3}$.

点评 本题考查三角形的边长的求法,考查两边和的最大值的求法,涉及到等差数列、正弦定理、正弦函数加法定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网