题目内容
11.已知数列{$\frac{{a}_{n}}{2n-1}$}的前n项和为Sn,若Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4,则数列{an}的前n项和Tn=36-$(8n+36)×(\frac{4}{5})^{n}$.分析 利用数列递推关系可得an,再利用错位相减法即可得出.
解答 解:∵Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4,∴n≥2时,Sn-1+$\frac{{4}^{n}}{{5}^{n-1}}$=4,相减可得:$\frac{{a}_{n}}{2n-1}$+$\frac{{4}^{n+1}}{{5}^{n}}$-$\frac{{4}^{n}}{{5}^{n-1}}$=0,可得:an=(2n-1)×$(\frac{4}{5})^{n}$.
n=1时,${a}_{1}+\frac{16}{5}$=4,解得a1=$\frac{4}{5}$,上式对于n=1时也成立.
∴an=(2n-1)×$(\frac{4}{5})^{n}$.
∴数列{an}的前n项和Tn=$1×\frac{4}{5}$+3×$(\frac{4}{5})^{2}$+5×$(\frac{4}{5})^{3}$+…+(2n-1)×$(\frac{4}{5})^{n}$,
∴$\frac{4}{5}$Tn=$(\frac{4}{5})^{2}$+3×$(\frac{4}{5})^{3}$+…+(2n-3)×$(\frac{4}{5})^{n}$+(2n-1)×$(\frac{4}{5})^{n+1}$,
相减可得:$\frac{1}{5}$Tn=$\frac{4}{5}+2×$$[(\frac{4}{5})^{2}+(\frac{4}{5})^{3}$+…+$(\frac{4}{5})^{n}]-$-(2n-1)×$(\frac{4}{5})^{n+1}$=$\frac{4}{5}$+2×$\frac{(\frac{4}{5})^{2}[1-(\frac{4}{5})^{n-1}]}{1-\frac{4}{5}}$-(2n-1)×$(\frac{4}{5})^{n+1}$,
可得Tn=36-$(8n+36)×(\frac{4}{5})^{n}$.
故答案为:36-$(8n+36)×(\frac{4}{5})^{n}$.
点评 本题考查了等比数列的通项公式与求和公式、错位相减法、数列递推关系,考查了推理能力与计算能力,属于中档题.
| A. | 3 125 | B. | 5 625 | C. | 8 125 | D. | 0 625 |
| A. | i≤119? | B. | i≥119? | C. | i≤60? | D. | i≥60? |
| A. | m=-1 | B. | m=1 | C. | m=2 | D. | m=-2 |