题目内容
5.已知cos$\frac{4π}{5}cos\frac{7π}{15}-sin\frac{9π}{5}$sin$\frac{7π}{15}$=cos(x+$\frac{π}{2}$)cosx+$\frac{2}{3}$,则sin2x等于( )| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{12}$ | D. | -$\frac{1}{12}$ |
分析 利用诱导公式、两角和与差的余弦公式以及二倍角公式对已知等式进行化简,然后求sin2x的值.
解答 解:∵cos$\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}$sin$\frac{7π}{15}$=cos($\frac{4π}{5}$-$\frac{7π}{15}$)=cos$\frac{π}{3}$=$\frac{1}{2}$,cos(x+$\frac{π}{2}$)cosx+$\frac{2}{3}$=-sinxcosx+$\frac{2}{3}$=-$\frac{1}{2}$sin2x+$\frac{2}{3}$,
∴$\frac{1}{2}$=-$\frac{1}{2}$sin2x+$\frac{2}{3}$,
∴sin2x=$\frac{1}{3}$.
故选:A.
点评 本题考查两角和与差的三角函数、诱导公式,考查计算能力.
练习册系列答案
相关题目
20.某几何体的三视图如图所示,则该几何体的体积为( )

| A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | 2 |
10.已知命题p:对任意x∈R,有cosx≤1,则( )
| A. | ¬p:存在x∈R,使cosx>1 | B. | ¬p:对任意x∈R,有cosx>1 | ||
| C. | ¬p:存在x∈R,使cosx≥1 | D. | ¬p:对任意x∈R,有cosx≥1 |
17.已知曲线y=$\frac{x^2}{4}$-lnx的一条切线的斜率为$\frac{1}{2}$,则切点的横坐标为( )
| A. | 3 | B. | 2 | C. | 2,-1 | D. | $\frac{1}{2}$ |