题目内容

1.下列命题中
①若loga3>logb3,则a>b;
②函数f(x)=x2-2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数$h(x)=\frac{{1-{e^{2x}}}}{e^x}$既是奇函数又是减函数.
其中正确的命题有②④.

分析 根据对数函数的图象和性质,可判断①;根据二次函数的图象和性质,可判断②;根据函数零点的定义,可判断③;分析函数的奇偶性和单调性,可判断④.

解答 解:若loga3>logb3>0,则a<b,故①错误;
函数f(x)=x2-2x+3的图象开口朝上,且以直线x=1为对称轴,
当x=1时,函数取最小值2,无最大值,故函数f(x)=x2-2x+3,x∈[0,+∞)的值域为[2,+∞);
故②正确;
g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,
则函数g(x)可能存在零点;
故③错误;
数$h(x)=\frac{{1-{e^{2x}}}}{e^x}$满足h(-x)=-h(x),故h(x)为奇函数,
又由$h′(x)=\frac{-{e}^{2x}}{{e}^{x}}$=-ex<0恒成立,故h(x)为减函数
故④正确;
故答案为:②④.

点评 本题以命题的真假判断与应用为载体,考查了对数函数的图象和性质,函数的值域,函数的零点,函数的奇偶性和函数的单调性等知识点,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网