题目内容

11.数列{an}是以d(d≠0)为公差的等差数列,a1=2,且a2,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{2}{{(n+1){a_n}}}$(n∈N*),求数列{bn}的前n项和Tn

分析 (Ⅰ)由题意可知:a2,a4,a8成等比数列,即(2+3d)2=(2+d)(2+7d),解得:d=2,由等差数列的通项公式即可求得求数列{an}的通项公式;
(Ⅱ)由(Ⅰ)化简bn,利用“裂项消项法”即可求得数列{bn}的前n项和Tn

解答 解:(Ⅰ)由a2,a4,a8成等比数列,
∴(2+3d)2=(2+d)(2+7d),整理得:d2-2d=0,
∵d=2,d=0(舍去),
∴an=2+2(n-1)=2n,
数列{an}的通项公式an=2n;
(Ⅱ)若bn=$\frac{2}{{(n+1){a_n}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
数列{bn}的前n项和Tn=1$-\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{n}-\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

点评 本题考查等差数列以及等比数列的应用,数列的通项公式的求法,数列求和的方法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网