题目内容

2.如果二面角α-L-β的大小是60°,线段AB在α内,AB与L所成的角为60°,则AB与平面β所成角的正切值是$\frac{{3\sqrt{7}}}{7}$.

分析 过点A作平面β的垂线,垂足为C,在β内过C作CD⊥l于D,连结AD,由三垂线定理证出AD⊥l,可得∠ADC为二面角α-L-β的平面角.连线CB,由AC⊥β可得∠ABC为AB与平面β所成的角,再利用解直角三角形知识,结合题中数据加以计算即可得出求出AB与平面β所成角的正弦值,根据同角三角函数的基本关系,即可AB与平面β所成角的正切值.

解答 解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.
连结AD,根据三垂线定理可得AD⊥L,
因此,∠ADC为二面角α-L-β的平面角,∠ADC=60°
又∵AB与L所成角为60°,
∴∠ABD=60°,
连结BC,可得BC为AB在平面β内的射影,
∴∠ABC为AB与平面β所成的角.
设AD=2x,则Rt△ACD中,AC=ADsin60°=$\sqrt{3}$x,
Rt△ABD中,AB=$\frac{AD}{sin60°}$=$\frac{4\sqrt{3}}{3}$x
∴Rt△ABC中,sin∠ABC=$\frac{AC}{AB}$=34,
∴tan∠ABC=$\frac{{3\sqrt{7}}}{7}$
故答案为:$\frac{{3\sqrt{7}}}{7}$.

点评 本题考查了二面角的平面角,考查了线面角,考查同角三角函数的基本关系,考查了学生的空间想象和思维能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网