题目内容

若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据椭圆的两个焦点与短轴的一个端点构成一个正三角形,所以得到 2c=a,然后根据离心率e=
c
a
,即可得到答案.
解答: 解:由题意,椭圆的两个焦点与短轴的一个端点构成一个正三角形,
∴2c=a
∴e=
c
a
=
1
2

故答案为:
1
2
点评:此题考查学生掌握椭圆的简单性质,考查了数形结合的数学思想,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网