题目内容
5.在平行四边形ABCD中,AD=1,∠BAD=30°,E为CD的中点.若$\overrightarrow{AC}•\overrightarrow{BE}=1$,则AB的长为( )| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AC},\overrightarrow{BE}$,利用数量积运算公式列出方程即可求出AB.
解答
解:∵ABCD是平行四边形,E为CD的中点,
∴$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,$\overrightarrow{BE}=\overrightarrow{BC}+\overrightarrow{CE}$=$\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$,
∴$\overrightarrow{AC}•\overrightarrow{BE}$=($\overrightarrow{AB}+\overrightarrow{AD}$)•($\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$)
=${\overrightarrow{AD}}^{2}-\frac{1}{2}{\overrightarrow{AB}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}$=1.
又${\overrightarrow{AD}}^{2}=1$,$\overrightarrow{AB}•\overrightarrow{AD}$=1×AB×cos30°=$\frac{\sqrt{3}}{2}$AB,${\overrightarrow{AB}}^{2}$=AB2,
∴1-$\frac{1}{2}$AB2+$\frac{\sqrt{3}}{4}$AB=1,解得AB=$\frac{\sqrt{3}}{2}$或AB=0(舍).
故选C.
点评 本题考查了向量的线性运算,数量积运算,属于基础题.
| A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{\sqrt{2}}{2}$+1 | D. | $\sqrt{2}$-1 |
| ξ | 0 | 1 | 2 |
| P | b | a2 | $\frac{1}{2}$-$\frac{a}{2}$ |
他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,则这些三角形数从小到大形成一个数列{an},那么a10的值为( )
| A. | 45 | B. | 55 | C. | 65 | D. | 66 |
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅱ)若从年龄在[55,65),的被调查者中各随机选取2人进行追踪调查,记选中的2人中赞成“车辆限行”的人数为X,求随机变量X的分布列和数学期望.