题目内容
20.分析 由已知中矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E恰与BC上的点P重合.设AB=1,FA=x(x>1),AD=y,我们利用勾股定理分别求出BP,PC,根据BC=BP+PC,可以得到 x,y的关系式,利用换元法结合二次函数的性质,可得答案.四面体F-ADP的外接球的球心为DF的中点,即可求出四面体F-ADP的外接球的半径.
解答 解:设FA=x(x>1),AD=y,
∵矩形ABCD与矩形ADEF所在的平面互相垂直,AB=1,FA=x(x>1),AD=y,
∴FE=FP=AD=BC=y,AB=DC=1,FA=DE=DP=x
在Rt△DCP中,PC=$\sqrt{{x}^{2}-1}$
在Rt△FAP中,AP=$\sqrt{{y}^{2}-{x}^{2}}$
在Rt△ABP中,BP=$\sqrt{{y}^{2}-{x}^{2}-1}$
∵BC=BP+PC=$\sqrt{{y}^{2}-{x}^{2}-1}$+$\sqrt{{x}^{2}-1}$=y
整理得y2=$\frac{{x}^{4}}{{x}^{2}-1}$,令x2=$\frac{1}{t}$
则y2=$\frac{1}{-{t}^{2}+t}$,
则当t=$\frac{1}{2}$,即x=$\sqrt{2}$时,y取最小值2.
四面体F-ADP的外接球的球心为DF的中点,DF=$\sqrt{2+4}$=$\sqrt{6}$,四面体F-ADP的外接球的半径是$\frac{\sqrt{6}}{2}$.
故答案为:$\sqrt{2}$,$\frac{\sqrt{6}}{2}$.
点评 本题考查的知识点是空间两点之间的距离计算,由于本题是几何与代数知识的综合应用,运算量比较大,而且得到的x,y的关系比较复杂,因此要用换元法,简单表达式.
| A. | -2 | B. | $\frac{1}{2}$ | C. | ±2 | D. | ±$\frac{1}{2}$ |
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
| A. | [0,1] | B. | (0,1] | C. | [1,+∞) | D. | (-∞,1] |
表一:
| 相关人员数 | 抽取人数 | |
| 环保专家 | 24 | x |
| 海洋生物专家 | 48 | 4 |
| 油气专家 | 36 | y |
| 重度污染 | 轻度污染 | 合计 | |
| 身体健康 | 30 | A | 50 |
| 身体不健康 | B | 10 | 60 |
| 合计 | C | D | E |
(1)求研究小组的人数;
(2)写出表二中A,B,C,D,E的值,并做出判断能否有99%的把握认为“海豚身体健康与受到污染有关”;(3)若从环保小组的环保专家和油气专家随机选2人撰写研究报告,求其中恰好有1人为环保专家的概率.
解答时可参考下面公式及临界值表:k0=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+b)(c+b)}$.
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 0.635 | 7.879 |