题目内容

2.已知关于x的不等式2x2-2mx+m<0的解集为A,若集合A中恰好有两个整数,则实数m的取值范围是($\frac{8}{3}$,$\frac{18}{5}$].

分析 由判别式大于0求得m>2,再由A中恰有两个整数,得$\sqrt{{m}^{2}-2m}$≤3,得到对称轴的范围,结合二次函数的性质得出关于m的不等式,求出m的取值范围即可.

解答 解:由题意可得,判别式△=4m2-8m>0,解得m<0(舍),或 m>2.
设A=(a,b),由于集合A中恰有两个整数则有|b-a|≤3,
即|$\frac{m+\sqrt{{m}^{2}-2m}}{2}-\frac{m-\sqrt{{m}^{2}-2m}}{2}$|=$\sqrt{{m}^{2}-2m}$≤3,
即m2-2m≤9,解得 2<m≤1+$\sqrt{10}$.
故有对称轴1<$\frac{m}{2}$≤$\frac{1+\sqrt{10}}{2}$$<\frac{5}{2}$,
令f(x)=2x2-2mx+m,
而f(4)=32-7m>0,f(0)=m>0,f(1)=2-m<0,
故A中的两个整数为1和2,∴f(2)<0,f(3)≥0.
即$\left\{\begin{array}{l}{8-3m<0}\\{18-5m≥0}\end{array}\right.$,解得$\frac{8}{3}<m≤\frac{18}{5}$.
∴实数m的取值范围是($\frac{8}{3}$,$\frac{18}{5}$].
故答案为:($\frac{8}{3}$,$\frac{18}{5}$].

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网