题目内容
4.在项数为奇数的等差数列中,所有奇数项的和为175,所有偶数项的和为150,则这个数列共有13项.分析 设此等差数列为{an},则a1+a3+…+a2n+1=175,a2+a4+…+a2n=150,可得nd-a2n+1=-25,即an+1=25,$\frac{(2n+1)({a}_{1}+{a}_{2n+1})}{2}$=(2n+1)an+1=325,联立解出即可得出.
解答 解:设此等差数列为{an},则a1+a3+…+a2n+1=175,a2+a4+…+a2n=150,
则nd-a2n+1=-25,即an+1=25,$\frac{(2n+1)({a}_{1}+{a}_{2n+1})}{2}$=(2n+1)an+1=325,
∴(2n+1)×25=325,解得n=6.
∴此数列共有13项.
故答案为:13.
点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.定义在R上的函数f(x),已知函数y=f(x+1)的图象关于直线x=-1对称,对任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则下列结论正确的是( )
| A. | f(0.32)<f(20.3)<f(log25) | B. | $f({log_2}5)<f({2^{0.3}})<f({0.3^2})$ | ||
| C. | $f({log_2}5)<f({0.3^2})<f({2^{0.3}})$ | D. | $f({0.3^2})<f({log_2}5)<f({2^{0.3}})$ |
19.关于x的不等式x2+ax-2<0在区间[1,4]上恒成立,则实数a的取值范围是( )
| A. | $(-∞,-\frac{7}{2})$ | B. | (-∞,1) | C. | $(-\frac{7}{2},+∞)$ | D. | (1,+∞) |