题目内容
椭圆
的离心率为
, 过点
, 记椭圆的左顶点为
.
(1)求椭圆的方程;
(2)设垂直于
轴的直线
交椭圆于
两点, 试求
面积的最大值;
(3)过点
作两条斜率分别为
的直线交椭圆于
两点,且
, 求证: 直线
恒过一个定点.
![]()
(1)由
,解得![]()
所以椭圆C的方程为x2+2y2=1.
(2) 解:设B(m,n),C(-m,n),则S△ABC=
×2|m|×|n|=|m|·|n|,
又1=m2+2n2≥2
=2
|m|·|n|,所以|m|·|n|≤
,
当且仅当|m|=
|n|时取等号,
从而S△ABC≤
,即△ABC面积的最大值为
.
(3)证明:因为A(-1,0),所以AB:y=k1(x+1),AC:y=k2(x+1),
由![]()
消去y,得(1+2k
)x2+4k
x+2k
-1=0,解得x=-1或![]()
∴ 点
,同理,有
,而k1k2=2,
∴ ![]()
∴ 直线BC的方程为![]()
即
,即
,
所以,得直线BC恒过定点
.
练习册系列答案
相关题目
抽样统计甲、乙两位射击运动员的
5次训练成绩(单位:环),结果如下:
| 运动员 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
| 甲 | 87 | 91 | 90 | 89 | 93 |
| 乙 | 89 | 90 | 91 | 88 | 92 |
则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.