题目内容

已知命题p:?x∈R,x2-3x+3≤0,则(  )
A、¬p:?x∈R,x2-3x+3>0,且¬p为真命题
B、¬p:?x∈R,x2-3x+3>0,且¬p为假命题
C、¬p:?x∈R,x2-3x+3>0,且¬p为真命题
D、¬p:?x∈R,x2-3x+3>0,且¬p为假命题
考点:命题的否定
专题:简易逻辑
分析:根据特称命题的否定是全称命题即可得到结论.
解答: 解:∵命题p是特称命题,
∴根据特称命题的否定是全称命题得:¬p:?x∈R,x2-3x+3>0,
∵判别式△=9-4×3=9-12=-3<0,
∴x2-3x+3>0恒成立,
故¬p为真命题,
故选:C
点评:本题主要考查含有量词的命题的否定,要求熟练掌握全称命题的否定是特称命题,特称命题的否定是全称命题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网