题目内容

19.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,AA1=1,底面△ABC是边长为2的正三角形,则三棱锥A-A1B1C1的体积为$\sqrt{2}$.

分析 连接B1C,则${V}_{A-B{B}_{1}C}={V}_{A-{B}_{1}{C}_{1}C}$,又${V}_{A-B{B}_{1}C}={V}_{{B}_{1}-ABC}$=${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$,${V}_{ABC}-{V}_{{A}_{1}{B}_{1}{C}_{1}}$=3${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$,由此能求出三棱锥A-A1B1C1的体积.

解答 解:连接B1C,则${V}_{A-B{B}_{1}C}={V}_{A-{B}_{1}{C}_{1}C}$,
又${V}_{A-B{B}_{1}C}={V}_{{B}_{1}-ABC}$=${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$,
∴${V}_{ABC}-{V}_{{A}_{1}{B}_{1}{C}_{1}}$=3${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$,
∵AA1⊥平面AB1C1,AA1=1,
底面△ABC是边长为2的正三角形,∴三棱锥A-A1B1C1的体积为:
${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=3×$\frac{1}{3}×\frac{1}{2}×2×\sqrt{(\sqrt{3})^{2}-1}×1$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网