ÌâÄ¿ÄÚÈÝ
6£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+acost\\ y=asint\end{array}$£¨tΪ²ÎÊý£¬a£¾0£©£¬ÔÚÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2£º¦Ñ=2sin¦È£®£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£¬²¢½«C1µÄ·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßC3µÄ¼«×ø±ê·½³ÌΪ¦È=$\frac{¦Ð}{4}$£¬ÈôÇúÏßC1ÓëC2µÄ¹«¹²µã¶¼ÔÚC3ÉÏ£¬ÇóaµÄÖµ£®
·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨ÇóÇúÏßC1µÄÆÕͨ·½³Ì£¬²¢½«C1µÄ·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇúÏßC1ÓëC2µÄ¹«¹²µãµÄ¼«×ø±êÂú×ã·½³Ì×é$\left\{\begin{array}{l}{¦Ñ^2}-2¦Ñcos¦È+1-{a^2}=0\\ ¦Ñ=2sin¦È\end{array}\right.$£¬Èô¦Ñ¡Ù0£¬ÓÉ·½³Ì×éµÃ4sin2¦È-4sin¦Ècos¦È+1-a2=0£¬ÓÉÒÑÖª$¦È=\frac{¦Ð}{4}$£¬¼´¿ÉÇóaµÄÖµ£®
½â´ð ½â£º£¨1£©ÏûÈ¥²ÎÊýtµÃµ½C1µÄÆÕͨ·½³Ì£¨x-1£©2+y2=a2£¬½«x=¦Ñcos¦È£¬y=sin¦È´úÈëC1µÄÆÕͨ·½³Ì£¬µÃµ½C1µÄ¼«×ø±ê·½³Ì£¬¦Ñ2-2¦Ñcos¦È+1-a2=0£®
£¨2£©ÇúÏßC1ÓëC2µÄ¹«¹²µãµÄ¼«×ø±êÂú×ã·½³Ì×é$\left\{\begin{array}{l}{¦Ñ^2}-2¦Ñcos¦È+1-{a^2}=0\\ ¦Ñ=2sin¦È\end{array}\right.$£¬Èô¦Ñ¡Ù0£¬
ÓÉ·½³Ì×éµÃ4sin2¦È-4sin¦Ècos¦È+1-a2=0£¬ÓÉÒÑÖª$¦È=\frac{¦Ð}{4}$£¬¿É½âµÃ1-a2=0£¬
¸ù¾Ýa£¾0£¬µÃµ½a=1£¬µ±a=1ʱ£¬¼«µãҲΪC1¡¢C2µÄ¹«¹²µã¶¼ÔÚC3ÉÏ£¬ËùÒÔa=1£®
µãÆÀ ±¾Ì⿼–˲ÎÊý·½³ÌºÍ¼«×ø±ê·½³ÌµÄÓ¦Ó㬿¼²éÁ˼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬ÊÇ»ù´¡Ì⣮
| A£® | £¨0£¬10£© | B£® | £¨-1£¬2£© | C£® | £¨0£¬1£© | D£® | £¨1£¬10£© |
| A£® | £¨-2£¬6£© | B£® | £¨-¡Þ£¬-6£©¡È£¨2£¬+¡Þ£© | C£® | £¨-¡Þ£¬-2£©¡È£¨6£¬+¡Þ£© | D£® | £¨-6£¬2£© |
| A£® | 8 | B£® | 3 | C£® | -1 | D£® | -6 |
| A£® | ³ä·Ö·Ç±ØÒª | B£® | ±ØÒª·Ç³ä·Ö | ||
| C£® | ³ä·Ö±ØÒª | D£® | ¼È·Ç³ä·ÖÓַDZØÒª |