题目内容
17.数列{an}满足a1=2,a2=1,并且$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2(n≥2),则数列{an}的第100项为( )| A. | $\frac{1}{{{2^{100}}}}$ | B. | $\frac{1}{{{2^{50}}}}$ | C. | $\frac{1}{100}$ | D. | $\frac{1}{50}$ |
分析 由$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2(n≥2),可得:$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$,可得数列$\{\frac{1}{{a}_{n}}\}$是等差数列,利用通项公式即可得出.
解答 解:由$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2(n≥2),可得:$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$,
可得数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为$\frac{1}{2}$,公差为$\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}}$=$\frac{1}{2}$.
∴$\frac{1}{{a}_{n}}$=$\frac{1}{2}$+$\frac{1}{2}$(n-1)=$\frac{n}{2}$.
解得an=$\frac{2}{n}$.
∴a100=$\frac{2}{100}$=$\frac{1}{50}$.
故选:D.
点评 本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.已知向量$\vec a=(1,2)$,$\vec b=(1,0)$,$\vec c=(3,4)$.若λ为实数,$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,则λ=( )
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
12.2cos275°-1的值为( )
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
6.已知定义在R上的函数f(x)满足f(x+2)=2f(x),且当x∈[2,4]时,$f(x)=\left\{\begin{array}{l}-{x^2}+4x,2≤x≤3\\ \frac{{{x^2}+2}}{x},3<x≤4\end{array}\right.$,g(x)=ax+1,对?x1∈[-2,0],?x2∈[-2,1],使得g(x2)=f(x1),则实数a的取值范围为( )
| A. | $({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$ | B. | $[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$ | C. | (0,8] | D. | $({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$ |