题目内容

16.在△ABC中,内角A,B,C的对边分别为a,b,c,且asinB=$\sqrt{3}$bcosA.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,c-b=1,求△ABC的面积.

分析 (Ⅰ)根据正弦定理化简可得答案.
(Ⅱ)由a=$\sqrt{7}$,c-b=1,利用余弦定理求解bc的值面积求出△ABC的面积.

解答 解:(Ⅰ)在△ABC中,∵asinB=$\sqrt{3}$bcosA.
由正弦定理,得:sinAsinB=$\sqrt{3}$sinBcosA∵0<B<π,sinB≠0.
∴sinA=$\sqrt{3}$cosA
即tanA=$\sqrt{3}$.
∵0<A<π,
∴A=$\frac{π}{3}$.
(Ⅱ)由a=$\sqrt{7}$,c-b=1,A=$\frac{π}{3}$,
由余弦定理,cosA=$\frac{{c}^{2}+{b}^{2}-{a}^{2}}{2bc}$,
得:bc=(c-b)2+2bc-7.
解得:bc=6.
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.

点评 本题考查三角形的正余弦定理和内角和定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网