题目内容
已知数列
是首项为
公比为
的等比数列,设
。
(1)求数列
的前n项和
;
(2)设
,数列
的前n项和为
,若
,是否存在正整数
,使得
对任意正整数
恒成立?若存在,求出正整数
的值或范围;若不存在,请说明理由。
解:(1)
,
,
当
时,
;
当
时,
是公比为
,首项为
的等比数列,
,
综上
.
(2)由题意
,
所以
,
所以
,
.
则![]()
,
即
,所以正整数
的值为
.
练习册系列答案
相关题目