题目内容
汽车从路灯正下方开始向前作变速行驶,汽车影长为l(t)=(t-1)3+t+1(t的单位是秒),则汽车影长变化最快的时刻是第 秒.
考点:变化的快慢与变化率
专题:导数的概念及应用
分析:先求导,再求出取最值时t的值即可.
解答:
解:l(t)=(t-1)3+t+1,
∴l′(t)=3(t-1)2+1,
当t=1时,l′(t)最小,
故汽车影长变化最快的时刻是第1秒,
故答案为:1.
∴l′(t)=3(t-1)2+1,
当t=1时,l′(t)最小,
故汽车影长变化最快的时刻是第1秒,
故答案为:1.
点评:本题主要考查了导数求导法则,属于基础题.
练习册系列答案
相关题目